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represented uniquely by paths, which are made up of the sides of the net
and whose initial points coincide with the same vertex of N, arbitrarily
chosen. The terminal points of the paths representing two equal finite
products coincide with the same vertex of N.

We can associate with the net N an infinite two—mamfold which can
be mapped topologically on the interior E; of a circle S. The points of
S may be taken to represent the reduced infinite products and thus the
infinite paths of the transformed net representing these products, and
will be called the ideal elements of the infinite two-manifold. By a proper
definition of continuity on E, 4 S, we can prove that the infinite two-
manifold and its ideal elements defined by means of the group is a closed
two-cell. ‘

1 Research Fellow of China Foundation. The author wishes to thank Professor S.
Lefschetz for valuable suggestions and encouragement in connection with this investi-

gation.

2 Nielson, J., Acta Mathematica, 50, 189-379 (1927). This is the third of his four
papers on this subject.

3 We agree to set (Gn) = (G) and (Gr)’ = (G:)’, if m = c¢p + n, ¢ being an integer
and 1 = n £ p.
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If s and ¢ represent any two operators of a given group G then the
operator s~!~Ist is commonly called the commutator of s and ¢. In the
present article the operator s~%~!st~! is defined as the inverse commutator
of s and ¢ and some fundamental properties of these commutators are
developed. Since the transform of an inverse commutator by any operator
of the group is an inverse commutator of this group it results directly
that all the inverse commutators of a group generate an invariant sub-
group of this group which will be called the inverse commutator subgroup.
The corresponding quotient group cannot involve any operator whose
order exceeds 2 and hence it must be the abelian group of order 2", and
of type (1, 1, 1, ...). Since all the inverse commutators of such a group
are obviously equal to the identity it results directly that the imverse
commautators of a group generate its smallest tnvariant subgroup which gives
rise to an abelian quotient group of order 2™ and of type (1,1, 1, ...), and -
every invariant subgroup which gives rise to such an abelian guotient group
must involve the inverse commutator subgroup.
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From this theorem it results directly that the inverse commutator
subgroup of every group whose order is of the form 2™ is its ¢-subgroup
and if the index of this subgroup is 2% then the number of operators in
every set of independent generators of the group is exactly «, and vice versa.
A necessary and sufficient condition that the commutator of s and ¢ is
the identity is that s and ¢ are commutative while a necessary and sufficient
condition that the inverse commutator of s and ¢ is the identity is that
s transforms £ into its inverse. It should be noted that when s transforms
t into its inverse it is not necessarily true that ¢ also transforms s into its
inverse. The concept of inverse commutator seems to be especially useful
when ¢ is supposed to represent successively all the operators of an abelian
group H which is transformed according to an automorphism of order 2
by s. Hence we shall assume in what follows that s and ¢ satisfy these
conditions so that only special inverse commutators and special inverse
commutator subgroups will be under consideration unless the contrary
is stated.

Since H is abelian all of its operators which correspond to their inverses
under an automorphism of H must constitute a subgroup of H. The
inverse commutator subgroup which corresponds to an automorphism of
H is therefore simply isomorphic with the quotient group of H with re-
spect to the subgroup formed by all the operators of A which correspond
to their inverses under this automorphism. In particular, when this
automorphism is of order 2 the corresponding inverse commutator sub-
group must be composed of operators which correspond to themselves
under this automorphism. It therefore results that when H is of odd
order its operators which correspond to their inverses under an auto-
morphism of order 2 constitute a subgroup which has only the identity
in common with the inverse commutator subgroup resulting from this
automorphism. The concept of inverse commutator subgroup therefore
furnishes a direct proof of the theorem that every abelian group of odd
order is the direct product of the two subgroups composed respectively of
its operators which correspond to themselves and to their inverses under
an automorphism of order 2.!

If H is a cyclic group of order p™, p being a prime number, it results
directly from the preceding paragraph that its group of isomorphisms
involves only one operator of order 2 when p > 2. When p = 2andm > 2
it results from similar considerations that this group of isomorphisms
involves three and only three operators of order 2. In fact, if the order
of the inverse commutator subgroup in an automorphism of order 2 of
this group exceeds 2 it must be 2™~ since the operators of order 4 must
then correspond to themselves. As all the operators of this commutator
subgroup must also correspond to themselves under this automorphism
it results that either all the operators correspond to themselves or that
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only the operators of highest order are multiplied by the operator of order
2 when the inverse commutator subgroup corresponding to an automor-
phism of order 2 of this group is of order 2”~". There is obviously one
such automorphism of order 2 when the inverse commutator subgroup
is the identity and one when this subgroup is of order 2.

As a further illustration of the use of these special inverse commutator
subgroups, and on account of the results, we shall employ them to de-
termine all the groups which have the property that they involve a given
abelian subgroup H of index 2 while all the additional operators are of
order 4. Since sist = sis~lst = s2f,, where f, is an inverse commutator
of G, and since #; is commutative with s, it results that #; is either the iden-
tity or of order 2. It cannot be equal to s? since st is assumed to be of
order 4. This proves the following theorem: If a group contains an
abelian subgroup H of index 2 and all of its remaining operators are of order
4 then its inverse commutators constitute a subgroup involving no square of
an operator not found in H. If this subgroup s extended by such a square
there results a subgroup of the central which involves no operator whose order
exceeds 2 and only such squares in addition to the inverse commutator sub-
group.

On the other hand it is easy to prove that when an abelian group H
contains a subgroup K involving no operator whose order exceeds 2 and
K is contained in a subgroup of H corresponding to a quotient group
which is isomorphic to a subgroup of index 2 in K, then H can be extended
to a group G of twice the order of H and such that each of the additional
operators is of order 4. The number of the different squares of these
additional operators is always equal to the order of the inverse commutator
subgroup of H under G. In particular, a necessary and sufficient condition
that all these additional operators have the same square is that s trans-
forms every operator of H into its inverse. If such a G can be constructed
so that it has 2%, « > 0, such distinct squares then that it is always possible
to construct with the same H a G which involves any lower power of 2
such distinct squares. The theorem noted at the close of the preceding
. paragraph involves therefore a necessary and sufficient condition that an
abelian group may be extended to a group of twice its order and such that
each of the added operators is of order 4.

A necessary and sufficient condition that the inverse commutator sub-
group corresponding to an automorphism of G is always identical with the
commutator subgroup corresponding to the same automorphism is that
G is abelian, of order 2", and of type (1, 1, 1, ...). Hence it results
directly that the commutators corresponding to an automorphism of
order 2 of such a group must correspond to themselves under this auto-
morphism. The special inverse commutator subgroup in which ¢ is an
operator of an abelian group H which is transformed into itself by s and
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involves s? is composed of the smallest subgroup of G which gives rise to
a quotient group which is either dihedral or generalized dihedral. Hence
it follows that the concepts of inverse commutator subgroup and special
inverse commutator subgroup enable us to unify a number of fundamental
theorems of groups of finite order. This unification is the main object of
the present note. While the identity automorphism gives rise only to the
identity commutator it gives rise to the squares of all the operators of the
group ds inverse commutators.
1G. A. Miller, Trans. Am. Math. Soc., 10, 472 (1909).
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It is the object of this paper to present a set of electromagnetic unit
dimensions, common to both electric and magnetic systems, based on the
conventional hypothesis that the dimensions of permittivity x, and per-
meability uo for free space are the same.

It was announced by Maxwell in 1881 in his Treatise,! Vol. 2, Chap. X,
that ‘“‘every electromagnetic quantity may be defined with reference to
the fundamental units of Length, Mass, and Time.” He formulated the
“dimensions” of each quantity, such as Resistance, Current, Capacitance,
etc., in terms of the fundamental quantities of dynamics—L, M, and T.
Thus with any velocity V, defined as a ratio L/T, the dimensions of
velocity would be L, M° T~ or giving only the exponents, as (1, 0,
—1). Similarly, the ordinary dynamic formulas of energy W, and of
power P, being respectively M V?/2 and W/T, their exponential dimen-
sional formulas would be (2, 1, —2) and (2, 1, —3).

Maxwell also showed that there were always two different dimensional
formulas for each electromagnetic quantity: namely, one in the electric
(electrostatic) system, and one in the magnetic (electromagnetic) system.
The electric units were derived from the force of repulsion between like
electric charges across a known distance, assuming that the permittivity
ko of free space is the numeric unity. The magnetic units were, however,
derived from the force of repulsion between like magnetic poles across a
known distance, assuming that the permeability p, of free space is the
numeric unity.

The accompanying table 1 is based on Maxwell’s list of dimensions for



